|
| 1: |
|
a__filter(cons(X,Y),0,M) |
→ cons(0,filter(Y,M,M)) |
| 2: |
|
a__filter(cons(X,Y),s(N),M) |
→ cons(mark(X),filter(Y,N,M)) |
| 3: |
|
a__sieve(cons(0,Y)) |
→ cons(0,sieve(Y)) |
| 4: |
|
a__sieve(cons(s(N),Y)) |
→ cons(s(mark(N)),sieve(filter(Y,N,N))) |
| 5: |
|
a__nats(N) |
→ cons(mark(N),nats(s(N))) |
| 6: |
|
a__zprimes |
→ a__sieve(a__nats(s(s(0)))) |
| 7: |
|
mark(filter(X1,X2,X3)) |
→ a__filter(mark(X1),mark(X2),mark(X3)) |
| 8: |
|
mark(sieve(X)) |
→ a__sieve(mark(X)) |
| 9: |
|
mark(nats(X)) |
→ a__nats(mark(X)) |
| 10: |
|
mark(zprimes) |
→ a__zprimes |
| 11: |
|
mark(cons(X1,X2)) |
→ cons(mark(X1),X2) |
| 12: |
|
mark(0) |
→ 0 |
| 13: |
|
mark(s(X)) |
→ s(mark(X)) |
| 14: |
|
a__filter(X1,X2,X3) |
→ filter(X1,X2,X3) |
| 15: |
|
a__sieve(X) |
→ sieve(X) |
| 16: |
|
a__nats(X) |
→ nats(X) |
| 17: |
|
a__zprimes |
→ zprimes |
|
There are 16 dependency pairs: